Corbel - Inputs:

Vuc kips Vertical Load on Corbel
Nuc kips Direct Horizontal Load on Corbel
Hc in Total Corbel Height
Bc in Total Corbel Width
av in Distance from face of column to load application point.
Lc in Distance from face of column to edge of corbel.
Sc in Column/wall width.
cover in clear cover to exterior face of reinforcement.
Main Corbel Bar:
db 0.375 in bar diameter
As 0.11 in2 bar area
Corbel Tie Bars:
db 0.375 in bar diameter
As 0.11 in2 bar area
λ
f'c psi Specified 28-day compressive strength of concrete.
β1 0.85 [Table 22.2.2.4.3]
fy psi Yield strength of bar to be developed.
μ: Coefficient of friction for shear friction

Corbel - Results:

Section 16.5 applicable :
Section dimensions satisfy 16.5.2.4:
Af ≤ Af,limit:
Asc,req : in2
in2
Ah,req : in2
in2
ACI 318-14 - Section 16.5 - Brackets and Corbels
Preliminary Computations
\[ d = H_{c} - (Cover + \frac{d_{b}}{2}) \] 0 in Depth from bottom of corbel at face of support to center of primary reinforcement.
Φcorbel 0.75 [Table 21.2.1 - Strength reduction factors Φ]
Nuc,design 0 kips [16.5.3.5 - Nuc,design shall be at least 0.2Vuc]
\[M_{u} = V_{uc}a_{v}+N_{uc,design}(H_{c}-d)\frac{1 \text{ ft}}{12 \text{ in}}\] 0 ft-kips [16.5.3.1]
16.5.1.1 -- Verification that 16.5 is applicable
\[ \frac{a_{v}}{d} \]
\[ N_{uc} \le V_{uc} \]
16.5.2.4 -- Verification that dimensions satisfy max shear friction
\[0.2F'_{c}b_{w}d \]
\[(480+0.08F'_{c})b_{w}d \]
\[1600b_{w}d \]
16.5.4 -- Design Strength
16.5.4.3 -- An for Tensile Strength
\[A_{n} = \frac{N_{uc,design}}{\phi F_{y}} \] in2
16.5.4.4 -- Avf for Shear Friction
\[A_{vf} = \frac{V_{uc}}{\phi \mu \lambda F_{y}} \] in2
16.5.4.5 -- Af for Flexure
\[ M_{uc} = \phi A_{f} f_y (d - \frac{a}{2}) \text{ ,where } a = \frac{A_{f} f_{y}}{0.85 f'_{c} B_{c}} \]
\[\frac{-1 \phi 10 f_{y}^2}{17 f'_{c} B_{c}} A_{f}^2 + \phi f_{y} d A_{f} - M_{uc,design} = 0 \] in2
\[ \epsilon_t = \left( \frac{\frac{a}{\beta_{1}}-d}{\frac{a}{\beta_{1}}} \right) 0.003 \text{ ,limit } \epsilon_t = 0.004 \]
\[A_{f, limit} = \frac{51 B_{c} \beta_{1} d f'_{c}}{140 f_{y}} \] in2
16.5.5 -- Reinforcement limits
16.5.5.1 -- Asc, Area of primary tension reinforcement
\[ \text{max } \begin{bmatrix}A_{f}+A_{n} \\ (\frac{2}{3})A_{vf}+A_{n} \\ 0.04(\frac{f'_{c}}{f_{y}})(B_{c}d) \end{bmatrix} \] 0 in2
16.5.5.2 -- Ah, Area of closed stirrups or ties parallel to Asc
\[A_{h}=0.5(A_{sc}-A_{n}) \] 0 in2