Corbel - Inputs:
Vuc | kips | Vertical Load on Corbel | |
Nuc | kips | Direct Horizontal Load on Corbel | |
Hc | in | Total Corbel Height | |
Bc | in | Total Corbel Width | |
av | in | Distance from face of column to load application point. | |
Lc | in | Distance from face of column to edge of corbel. | |
Sc | in | Column/wall width. | |
cover | in | clear cover to exterior face of reinforcement. | |
Main Corbel Bar: | |||
db | 0.375 | in | bar diameter |
As | 0.11 | in2 | bar area |
Corbel Tie Bars: | |||
db | 0.375 | in | bar diameter |
As | 0.11 | in2 | bar area |
λ | |||
f'c | psi | Specified 28-day compressive strength of concrete. | |
β1 | 0.85 | [Table 22.2.2.4.3] | |
fy | psi | Yield strength of bar to be developed. | |
μ: | Coefficient of friction for shear friction |
Corbel - Results:
Section 16.5 applicable : | ||
Section dimensions satisfy 16.5.2.4: | ||
Af ≤ Af,limit: | ||
Asc,req : | in2 | |
in2 | ||
Ah,req : | in2 | |
in2 |
ACI 318-14 - Section 16.5 - Brackets and Corbels
Preliminary Computations | |||
---|---|---|---|
\[ d = H_{c} - (Cover + \frac{d_{b}}{2}) \] | 0 | in | Depth from bottom of corbel at face of support to center of primary reinforcement. |
Φcorbel | 0.75 | [Table 21.2.1 - Strength reduction factors Φ] | |
Nuc,design | 0 | kips | [16.5.3.5 - Nuc,design shall be at least 0.2Vuc] |
\[M_{u} = V_{uc}a_{v}+N_{uc,design}(H_{c}-d)\frac{1 \text{ ft}}{12 \text{ in}}\] | 0 | ft-kips | [16.5.3.1] |
16.5.1.1 -- Verification that 16.5 is applicable | ||
---|---|---|
\[ \frac{a_{v}}{d} \] | ||
\[ N_{uc} \le V_{uc} \] |
16.5.2.4 -- Verification that dimensions satisfy max shear friction | ||
---|---|---|
\[0.2F'_{c}b_{w}d \] | ||
\[(480+0.08F'_{c})b_{w}d \] | ||
\[1600b_{w}d \] |
16.5.4 -- Design Strength | ||
---|---|---|
16.5.4.3 -- An for Tensile Strength | ||
\[A_{n} = \frac{N_{uc,design}}{\phi F_{y}} \] | in2 | |
16.5.4.4 -- Avf for Shear Friction | ||
\[A_{vf} = \frac{V_{uc}}{\phi \mu \lambda F_{y}} \] | in2 | |
16.5.4.5 -- Af for Flexure | ||
\[ M_{uc} = \phi A_{f} f_y (d - \frac{a}{2}) \text{ ,where } a = \frac{A_{f} f_{y}}{0.85 f'_{c} B_{c}} \] | ||
\[\frac{-1 \phi 10 f_{y}^2}{17 f'_{c} B_{c}} A_{f}^2 + \phi f_{y} d A_{f} - M_{uc,design} = 0 \] | in2 | |
\[ \epsilon_t = \left( \frac{\frac{a}{\beta_{1}}-d}{\frac{a}{\beta_{1}}} \right) 0.003 \text{ ,limit } \epsilon_t = 0.004 \] | ||
\[A_{f, limit} = \frac{51 B_{c} \beta_{1} d f'_{c}}{140 f_{y}} \] | in2 |
16.5.5 -- Reinforcement limits | ||
---|---|---|
16.5.5.1 -- Asc, Area of primary tension reinforcement | ||
\[ \text{max } \begin{bmatrix}A_{f}+A_{n} \\ (\frac{2}{3})A_{vf}+A_{n} \\ 0.04(\frac{f'_{c}}{f_{y}})(B_{c}d) \end{bmatrix} \] | 0 | in2 |
16.5.5.2 -- Ah, Area of closed stirrups or ties parallel to Asc | \[A_{h}=0.5(A_{sc}-A_{n}) \] | 0 | in2 |